Component-By-Component Construction of Good Intermediate-Rank Lattice Rules

نویسندگان

  • Frances Y. Kuo
  • Stephen Joe
چکیده

It is known that the generating vector of a rank-1 lattice rule can be constructed component-by-component to achieve strong tractability error bounds in both weighted Korobov spaces and weighted Sobolev spaces. Since the weights for these spaces are nonincreasing, the first few variables are in a sense more important than the rest. We thus propose to copy the points of a rank-1 lattice rule a number of times in the first few dimensions to yield an intermediate-rank lattice rule. We show that the generating vector (and in weighted Sobolev spaces, the shift also) of an intermediate-rank lattice rule can also be constructed component-by-component to achieve strong tractability error bounds. In certain circumstances, these bounds are better than the corresponding bounds for rank-1 lattice rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Construction of Good Lattice Rules

We develop a fast algorithm for the construction of good rank-1 lattice rules which are a quasi-Monte Carlo method for the approximation of multivariate integrals. A popular method to construct such rules is the component-by-component algorithm which is able to construct good lattice rules that achieve the optimal theoretical rate of convergence. The construction time of this algorithm is O(sn)...

متن کامل

Reducing the construction cost of the component-by-component construction of good lattice rules

The construction of randomly shifted rank-1 lattice rules, where the number of points n is a prime number, has recently been developed by Sloan, Kuo and Joe for integration of functions in weighted Sobolev spaces and was extended by Kuo and Joe and by Dick to composite numbers. To construct d-dimensional rules, the shifts were generated randomly and the generating vectors were constructed compo...

متن کامل

Component-by-component construction of good lattice rules

This paper provides a novel approach to the construction of good lattice rules for the integration of Korobov classes of periodic functions over the unit s-dimensional cube. Theorems are proved which justify the construction of good lattice rules one component at a time – that is, the lattice rule for dimension s+ 1 is obtained from the rule for dimension s by searching over all possible choice...

متن کامل

Amr 00 / 8 Component - by - Component Construction of Good Lattice Rules

This paper provides a novel approach to the construction of good lattice rules for the integration of Korobov classes of periodic functions over the unit s-dimensional cube. Theorems are proved which justify the construction of good lattice rules one component at a time – that is, the lattice rule for dimension s + 1 is obtained from the rule for dimension s by searching over all possible choic...

متن کامل

Good lattice rules based on the general weighted star discrepancy

We study the problem of constructing rank-1 lattice rules which have good bounds on the “weighted star discrepancy”. Here the non-negative weights are general weights rather than the product weights considered in most earlier works. In order to show the existence of such good lattice rules, we use an averaging argument, and a similar argument is used later to prove that these lattice rules may ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003